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Abstract 
An extension to the peaklist optimization procedure is 
proposed, in which one overall phase refinement cycle 
consists of tangent expansion, E-map, peaksearch and 
elimination of peaks to achieve a maximum correla- 
tion coefficient between Eo and E~. This procedure 
appears to be able to solve large structures from random 
phases given data to atomic resolution. The power of 
the method can be substantially increased by starting 
with slightly better than random phases, obtained for 
example from threefold Patterson vector superposition 
minimum functions or rotation searches using a frag- 
ment of known geometry. These two sources of phase 
information require expansion of the data to the space 
group P1, which also appears to be a useful strategy 
when starting from random phases. This real/reciprocal 
space recycling procedure was successful in solving 
two small known proteins and three unknown 200+- 
atom small-molecule structures. An investigation of the 
influence of the resolution on the peaklist optimization 
algorithm shows that there is a marked deterioration 
in the effectiveness as the resolution of the data is 
truncated, the deterioration being particularly marked 
between 1.2 and 1.3/~ 

Introduction 
It has become common practice to improve and extend 
the trial structures obtained by direct methods by some 
sort of automatic Fourier recycling before attempting 
a chemical interpretation. A scheme described by 
Sheldrick (1982) and subsequently incorporated in 
the program SHELXS86 (Sheldrick, 1985) is shown 
in Fig. 1. The starting phases were taken from the 
direct methods solution with the best figures of merit, 
or from tangent expansion (Karle, 1968) of a partial 
structure. These phases were used to calculate an E- 
map (Fourier synthesis using observed E-magnitudes 
and calculated phases), which was then searched for the 
highest M independent peaks, where M was usually ca 
30% greater than the expected number of unique atoms. 
Starting with the lowest peak, peaks were eliminated 
if so doing caused the index RE= E(Eo-kEo)2/EEo 2 
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(where k was a scale factor chosen to minimize RE) to 
fall, and otherwise retained. Three scans of the peaklist 
were performed, after which this stage, which will be 
referred to henceforth as 'peaklist optimization', had 
usually converged. The resulting peaks were then used 
to calculate new phases for the strongest E-values (say 
Eo > 1.2), assuming that all atoms were point atoms 
with the same atomic number, and the cycle of peaklist 
optimization, E-map and peaksearch repeated several 
times. The final peaklist was used to construct a picture 
of the structure, which often was rather complete. It 
was probably the completeness of this structure solution 
which, more than any other factor, led to the wide 
acceptance of the program. Indeed, in some cases there 
were reasons to suspect that the peaklist optimization 
procedure had somehow succeeded in extracting the 
correct structure from a very dubious or even totally 
incorrect direct-methods solution. Lamzin & Wilson 
(1993) have proposed a scheme for automated protein 
refinement (ARP), which also involves the rejection and 
addition of atoms, but the selection of these atoms is 
based on analysis of the 3Fo-2Fc and Fo-Fc maps, 
respectively. 

I Phases from Tangent expansion" 
direct methods of partial structure 

for Eo>1.2 to Eo>1.2 

Calculate E-map and ] 
search for top 1.3N peaks 

T ~M cycles 
fEliminate peaksl 

Calculate new 1/ | one by one to | 
phases for Eo>1.2 J" ~ ~ minimize RE J 

Display picture ! 
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Fig. 1. The peaklist optimization procedure as implemented in SHELXS86 
to improve the quality' of the E-map obtained from direct methods or 
from tangent expansion of a partial structure. Typically 1-5 iterations 
were performed using only E-values greater than 1.2. 
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Two recent developments indicated that it might be 
practical to extend this real/reciprocal space recycling so 
that the first stage - the original 'direct methods' - could 
be dispensed with entirely. The first of these is the series 
of spectacular successes that Weeks, DeTitta, Miller 
& Hauptman (1993), DeTitta, Weeks, Thuman, Miller 
& Hauptman (1994) and Weeks, DeTitta, Hauptman, 
Thuman & Miller (1994) have achieved with a related 
real/reciprocal space recycling scheme, in which phases 
are refined to minimize a function of the estimated 
cosines of structure invariants, followed by E-map calcu- 
lation, peaksearch and calculating new phases based on 
the top N peaks (where N is the number of unique atoms 
expected). Alternation between real and reciprocal space 
was also always a fundamental feature of the D I R D I F  

system; see, for example, Beurskens, Gould, Bruins Slot 
& Bosman (1987). The second important development 
is the enormous increase in computer number-crunching 
power over the last few years, which makes it possible 
to employ 'brute force' algorithms which would have 
been out of the question a few years ago. To put this 
in a crystallographic context, we shall define the unit of 
computer power as the 'VAX', since the Digital Equip- 
ment VAX/780 and the approximately equally powerful 
MicroVAXII were widely used in crystallographic lab- 
oratories in the second half of the 1980's. Current 
inexpensive RISC workstations benchmark in the range 
30-200 VAX, and a 90 MHz Pentium PC achieves ca  

60 VAX (benchmarks based on crystallographic least- 
squares refinement). One 'VAX-year' is then the amount 
of number crunching that a VAX could (theoretically) 
have achieved in 1 year of continuous operation. The 
VAX-year proves to be a convenient unit to measure the 
computer resources required by the methods presented 
in this paper. 

Methods 
In this paper we restrict ourselves to the space group 
P1; except where explicitly stated to the contrary, data 
for structures in other space groups were expanded to 
triclinic first (all the test structures are noncentrosym- 
metric). At first sight this procedure has the serious 
disadvantage that the time taken is substantially in- 
creased (by a factor corresponding approximately to the 
number of symmetry operations). On the other hand, 
it has been observed frequently that the success rate of 
conventional direct methods is much higher (per starting 
random phase set) in lower-symmetry space groups; our 
tests have shown that the success rate is often increased 
by an order of magnitude in going from P1 to P1. For 
many years it has been standard practice in Grttingen to 
solve P i  structures in P1 and then to find b_y inspection 
the translation necessary to place the (P1) inversion 
center at the origin. Possibly the presence of spatially 
fixed symmetry elements enables a phase set to become 
trapped in a false minimum, whereas in the absence 

of symmetry a continuous phase-improvement path is 
available which leads to the correct solution. Although 
the real/reciprocal space recycling scheme proposed here 
is often successful starting from random phases, we 
were primarily interested in using it to refine slightly 
better than random starting phase sets obtained by either 
Patterson vector superposition or rotation search using 
a fragment of known geometry. Both these approaches 
are conventionally followed by a translation search to 
locate the position of the origin of the true space group, 
but they can also be regarded as providing approximate 
phases directly for data expanded to the space group 
P1. 

The method proposed and tested in this work is sum- 
marized in Fig. 2. If 'heavier '  atoms such as phosphorus, 
sulfur or chlorine are present (in addition to carbon etc.) ,  

starting maps can be obtained in the form of threefold 
Patterson vector superposition minimum functions. If the 
structure contains a relatively rigid fragment, for which 
the geometry can be predicted by semiempirical methods 
or taken from a related crystal structure, the best rotation 
function solutions can provide starting atoms lists. If 
neither of these approaches is practical, we enter the 
procedure with random phases; it would have been just 
as convenient to start from random atoms, and Weeks, 
Hauptman, Chang & Miller (1994) have shown that 

Random phases J 

"Rotation search 
using known 

fragment 

Calculate P1 E-map and 
search for top 1.3N peaks 

Threefold Patterson 
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minimum function 
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Fig. 2. The peaklist optimization procedure in space group P1 starting 

from (almost) random phases. All E-values are employed in calculat- 
ing the correlation coefficient CC; 50% of the reflections with Eo > 
1.4 which have the highest Ec values are typically used as input to the 
tangent formula. The recycling is usually repeated until at least one 
of the parallel trials has a correlation coefficient that clearly identifies 
it as being a correct solution. 
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random atoms give a slightly higher success rate than 
random phases in their procedure. 

One full cycle of the procedure consists of tangent 
expansion, E-map, peaksearch and peaklist optimization. 
The current atom list is used to calculate E-values for 
all Eo greater than (say) 1.4. For example, 50% of these 
reflections with the highest calculated E-magnitudes are 
then used on the right-hand side of a tangent formula 
summation. In the tests described here we performed 
two tangent iterations per overall cycle, developing 
phases for all Eo values greater than (say) 1.4 and 1.2, 
respectively. The phases were applied to the observed 
E-values at the end of each iteration. In the first overall 
cycle starting from the superposition minimum function 
or rotation search, four tangent iterations were performed 
rather than two. We have not yet made systematic 
attempts to improve the algorithm for tangent expan- 
sion, which is based closely on that proposed by Karle 
(1968), but a number of tests showed that it is relatively 
optimal and not very sensitive to small variations in the 
parameters. The phases from the tangent expansion and 
the observed E-magnitudes are used to calculate an E- 
map, which is then searched for M peaks (where M is 
ca 30% greater than the number of atoms in the cell). 
Peaklist optimization (two scans from the lowest to the 
highest peak were found to be the most cost effective) 
is then followed by applying the calculated phases to 
the observed E-values and the cycle is repeated as often 
as required. Usually ca ten phase sets are processed in 
parallel; this has the advantage in the tangent expansion 
stage that it is not necessary to store the (possibly a very 
large number of) triple phase invariants; instead they are 
found on the fly and applied to all phase sets in parallel. 

Vector superposition 

The Patterson vector superposition minimum function 
is discussed in detail in Buerger's (1959) book, where 
it is referred to as the 'vector shift' method, but has 
been almost forgotten as a method of solving struc- 
tures because of the almost omnipotent direct methods. 
Sheldrick (1992) and Sheldrick, Dauter, Wilson, Hope & 
Sieker (1993) showed that it can be a very effective way 
of locating heavier atoms such as sulfur even for small 
proteins, provided that data have been measured to very 
high resolution. Since we are interested here in obtaining 
initial phases rather than a few heavier atoms, we have 
chosen to make a threefold vector superposition rather 
than the twofold superposition used in our previous 
work. The threefold superposition is obtained by over- 
laying three copies of the three-dimensional sharpened 
Patterson, shifted from one another by the three sides of a 
vector triangle, all three vectors corresponding to strong 
Patterson peaks. The minimum function of the three 
Pattersons is calculated numerically, and is then searched 
for the highest peaks. The threefold superposition map 
is noisier than a twofold map, but for a general triangle 

consisting of single-weight Patterson vectors it should 
theoretically correspond (in the absence of Patterson 
overlap) to a single image of the structure; a twofold 
superposition would consist of two images related by a 
center of symmetry. It will be seen later that it can be 
difficult to extract the correct structure from a centro- 
symmetric double image. In our tests we calculated 
'super-sharp' Pattersons with coefficients (E3F) t/2. The 
Patterson peak list is searched for unique vector tri- 
angles, taking the symmetry of Patterson space into 
account: the triangles with the highest values of 

P T  = PIP2Pa/[d  2 + (.qr)2], 

where P~, P2 and P3 are the values of the Patterson 
function for each of the three vectors, d is the lack of 
closure of the vector triangle (A), r is the maximum 
resolution of the reflection data (A), and g is an empirical 
constant which was set to 0.6 in the tests reported here. 
Only Patterson peaks further than a specified minimum 
distance (typically 6A) from the nearest lattice point 
were employed; Patterson functions of larger molecules 
typically contain high density at smaller distances from 
the origin arising from repeated secondary structure etc. 

Rotation search 

For testing purposes we chose simply to formulate the 
rotation search as a search for maxima of the function 
E[(Eo 2 -  l)Ec2], calculated for the highest observed E- 
values (typically Eo > 1.8). Powell's (1965) method was 
used to find the maximum starting from random orienta- 
tions since it does not require analytical derivatives. The 
Ec values were calculated by a conventional structure- 
factor summation assuming point atoms. Comparisons 
showed that the results were at least as good as those 
obtained with the more sophisticated Patterson space 
rotation search employed in the program PATSEE (Egert 
& Sheldrick, 1985). The unique orientations (taking the 
rotation and reflection but not translation components 
of the symmetry operators into account to eliminate 
equivalents) with the highest values of this function were 
used to generate several (typically ten) sets of initial 
atoms for the recycling procedure. 

Peaklist optimization 

Three small changes were made to the original peak- 
list optimization scheme. Firstly, instead of using a 
reduction in RE as a criterion for deleting a peak, 
an increase in the correlation coefficient proposed by 
Fujinaga & Read (1987) was used instead; this appears 
to Ire more sensitive in the critical early stages. This 
correlation coefficient is defined as follows 

C C  2 2 _ E w E o E w E c ] /  = [ E w E o E ~ E w  2 2 

__ (y]?l, E2)2]}1/2. 
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After some experimentation we used weights w = 
1/[0.04 + cr2(Eo)] for all the tests reported here. Secondly, 
instead of assuming that all atoms have the same point- 
atom scattering factors, the peaklist is compared with the 
anticipated chemical contents of the unit cell, assigning 
the N] highest peaks to the N] atoms expected for the 
element with the highest atomic number etc. We also 
tried allowing the peaklist optimization algorithm to 
vary the scattering factor types so as to maximize the 
correlation coefficient, but this proved unreliable and 
was not used in the work reported here. The point- 
atom scattering factors were normalized as a function of 
diffraction angle by dividing by the square root of the 
total scattering power of the estimated unit-cell contents, 
so that, for example, the values for heavier elements 
tended to rise with increasing 20. The third change is 
the use of all data in the peaklist optimization rather 
than (typically) Eo > 1.2, as in SHELXS86 (Sheldrick, 
1985); a decade ago it was felt necessary to restrict the 
number of reflections in order to minimize the computer 
time required. 

An additional option is the elimination of fragments 
consisting of a very small number of atoms; this is a 
simple way of incorporating the idea of connectivity. In 
the peaklist optimization tests reported here, fragments 
containing less than four atoms were eliminated (except 
where stated to the contrary). This proved to be slightly 
beneficial for the JFA and balhimycin tests, but slightly 
disadvantageous for rubredoxin. 

Mean phase errors (MPE) 

To monitor the progress for known test structures, 
an E-weighted mean phase error (MPE) was calculated 
(for Eo greater than 1.4) by finding the translation 
necessary to give the best agreement between the cal- 
culated phases and either the 'true' phases or the 'true' 
phases subtracted from 360 ° (for the enantiomorph). 
The 'true' phases were based on a full anisotropic 
least-squares refinement, including H atoms. Since an 
exhaustive search was made for the translation with 
the lowest weighted mean phase error, random phases 
must give values less than 90 ° and typically resulted in 
mean phase errors of around 80 ° . Progress in solving 
unknown structures is monitored by writing the atom 
list to file for the solution with the best correlation 
coefficient thus far; this can be inspected by interactive 
computer graphics whilst the structure solution job is still 
in progress. Weeks, Hauptman, Chang & Miller (1994) 
described a similar interactive monitoring scheme for 
their real/reciprocal space recycling. 

Tests  on  k n o w n  s t r u c t u r e s  

To test the method we chose two genuine P1 'small- 
molecule' structures and two small proteins. In all 
cases excellent experimental data had been measured 
to 1 A, resolution or better. The 148-atom P1 structure 

Table 1. Known test structures 

Codename Space group N (unique atoms) N (atoms in P1 cell) 
JFA P1 148 148 
Balhimycin P 1 263 263 
Crambin P21 ca 420 ca 840 

Rubredoxin P21 ca 500 ca 1000 

(JFA) was determined by Karle, Flippen-Anderson, 
Uma, Balaram & Balaram (1989) by direct methods 
(Sheldrick, 1990). The 263-atom P1 structure (bal- 
himycin) was solved (Sheldrick, Paulus, Vertesey & 
Hahn, 1995) via location of the four C1 atoms by 
Patterson vector superposition methods, followed by 
partial structure expansion (as summarized in Fig. 1); 
we have not succeeded in solving the structure by 
conventional direct methods. For the two small proteins 
crambin and rubredoxin, the same data sets were used 
as for the Patterson and direct-methods tests reported by 
Sheldrick et al. (1993). Relevant crystallographic details 
of these four test structures are summarized in Table 
1. These structures, even without expanding the two 
proteins to P1, are large enough to provide a realistic 
test of any ab initio structure solution method. 
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Fig. 3. The E-weighted MPE as a function of cycle number for the 148- 
atom PI  structure JFA starting from random phases. In (a) no peaklist 
optimization was employed; the top 148 unique peaks were reinput 
as atoms. In (b) peaklist optimization was employed as summarized 
in Fig. 2. 
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Random starting phases 
Fig. 3 shows the E-weighted MPE (for Eo > 1.4) as 

a function of the overall cycle number for the structure 
JFA and the procedure defined in Fig. 2 starting from 
random phases. In (a) no peaklist optimization was 
applied; the top N =  148 unique peaks were reinput as 
atoms. In (b) peaklist optimization was employed as 
described above. It will be seen that after 24 cycles, (a) 
has yielded one correct solution out of ten trials, whereas 
(b) has produced seven correct solutions. In fact all the 
phase sets converged to correct solutions after ~ 70 
cycles in (b). The peaklist optimization runs converged 
to significantly lower mean phase errors than the runs in 
which simply the top N peaks were recycled. 

Starting phases from rotation search 
The unit cell of JFA contains two linear peptide 

molecules with slightly different but predominantly c~- 
helical structures. Fig. 4 shows the dramatic effect of 
starting with phases from a rotation search using a 
standard 12-atom ~-helical triglycine fragment. Five 
of the top ten unique rotation function maxima have 
converged to correct solutions within three cycles, and 
after 16 cycles all the phase sets have led to solutions. 
There are many good ways of fitting this small fragment 
to the structure, but it should be noted that one of 
the solutions (indicated with an asterisk in Fig. 4) 
corresponds to the opposite enantiomorph, i.e. must be 
regarded as a fortuitous accident (it also has the largest 
initial MPE). 

Starting phases from Patterson superposition 
The balhimycin structure can be solved by the pro- 

cedure described in Fig. 2 starting from random phases, 
but the first correct solution (out of ten parallel trials) 
does not emerge until about cycle 70. It is much more 

effective to take advantage of the presence of four 
C1 atoms in the unit cell, which should generate four 
vector triangles. The top ten vector triangles generated 
as described above do indeed include the four correct 
triangles (ranked 2, 4, 8 and 9, according to the PT 
figure of merit, and indicated by asterisks in Fig. 5a), 
three of which leading to a solution within five cycles, 
and two triangles consisting of two CI atoms and one 
light atom converge by cycles 8 and 14, respectively. 
One correct vector triangle has a lower initial MPE than 
the other solutions, but does not refine; it turns out that 
it is locked into a centrosymmetric false minimum. 

A similar pattern is observed for crambin (Fig. 5b, 
expanded to P1), which has 12 S atoms in the unit 
cell which should generate 220 possible vector triangles, 
some of which are, however, related by symmetry. 
The ten triangles with the best figures of merit PT 
include four correct $3 triangles (indicated by aster- 
isks), which all converge within five cycles. Three other 
triangles which each involve one correct S - -S  vector 
also converge by cycles 10, 13 and 17. To put this 

90- 

86- 

70- 

60- 

H 5D 
P 
E 46 

36 

26 

16- 

6 
2 .~ fl 1~ 12 14 1G 18 2g 

Cycle number 

(a) 

7g- 

;;g- 

E 4 -  

311- 

2 |-  

I|- 

| 
2 4 G 8 lg 12 14 11; 

Cycle number 

Fig. 4. The same structure and procedure as in Fig. 3(b), but starting 
from 'almost random' phases obtained from the best independent 
rotation search solutions for a 12-atom c~-helical triglycine fragment. 
The improvement is dramatic, and all trials have converged to the 
correct solution after 16 cycles. However, one solution (marked with 
an asterisk) corresponds to the enantiomorph of the true structure 
(and **-helix fragment). 
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Fig. 5. Peaklist optimization in PI starting from 'almost random' phases 

obtained from threefold vector superposition minimum functions for 
(a) balhimycin and (b) crambin. The vector triangles were derived 
automatically by an analysis of the supersharp Patterson; those which 
correspond to three 'heavy' atoms (CI or S, respectively) are marked 
with asterisks. 
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70% success rate in the ab initio solution of a small 
protein into perspective, it must be pointed out that 
it is only possible because high-quality experimental 
data are available to extremely high resolution, and the 
test reported here required 8.4 VAX-years of computer 
time! In this example the selection of vector triangles 
could have been improved by downweighting triangles 
involving vectors with y = 0, since Patterson density will 
tend to accumulate in this plane in space group P21. 
On the other hand, it is desirable to retain the Harker 

_ 1  vectors with y -  3" 

Correlation coefficient (CC) and MPE 

In all the tests reported here, the correlation coefficient 
was strongly correlated with the MPE and provided a 
very reliable indication as to whether a correct solu- 
tion was emerging. In general, a CC of greater than 
50% corresponds to a correct solution. Fig. 6 shows 
scatterplots of MPE against CC for JFA and crambin; 
in both cases the points lie close to a smooth curve, 
especially as CC increases. When, rather than using 
all data, only Eo values greater than 1.4 were used to 
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Fig. 6. Scatterplots of MPE against correlation coefficient for (a) JFA and 
(b) crambin. It will be seen that the correlation coefficient provides 
an excellent indication of the quality of the phase set and it is clearly 
appropriate for the identification of correct solutions of unknown 
structures. 

calculate the correlation coefficient, the discrimination 
was much poorer; incipient correct solutions only stood 
out from the rest when the MPE had fallen below ca 
30 °. Beurskens et al. (1987) have also observed that the 
correlation coefficient is more effective when all data 
are used. 

Enantiomorph resolution 

In the tests reported so far, when the MPE dropped 
to below ca 60 ° , the recycling procedure was able 
to determine the full structure within a few additional 
cycles in which the MPE dropped monotonically. In 
the case of rubredoxin (expanded to P1), there are two 
Fe atoms in the cell, so it is necessary to start from 
an Fe2S vector triangle; in fact, the triangle with the 
best figure of merit PT and several other high-ranking 
triangles were of this type. When the full data and 
peaklist optimization were used with a superposition 
minimum function generated from the 'best '  vector 
triangle, the recycling procedure reduced the MPE to 
45.1 ° after two cycles, but the MPE of the enan- 
tiomorph was also reduced to 51.0 °. In the third cycle, 
the MPE was reduced further to 27.0 °, but the MPE 
from the inverted structure rose to 68.0 °, and after five 
cycles the values had essentially converged to 13.7 and 
78.3 ° , respectively. Clearly the presence of only two 
heavy atoms leads to a pseudocentrosymmetric structure 
(with an inversion center midway between the two Fe 
atoms), but the recycling procedure is able to break this 
pseudosymmetry rather effectively. Because peaks are 
eliminated one-by-one, the peaklist optimization would 
be expected to lead to one enantiomorph or the other; 
each peak removed would be more likely to tip the 
scales further in the same direction. When, instead of 
the peaklist optimization, the top N peaks were accepted 
in each cycle, the MPE values were still 47.6 and 44.6 ° 
after 20 cycles, and there was little sign of progress. 
There is no reason why simply recycling the top N peaks 
should break the pseudosymmetry, especially since the 
tangent formula tends to drift towards a centrosymmetric 
(pseudo)solution anyway. 

The effect of resolution on peaklist optimization 

The peaklist optimization/tangent formula recycling 
from the 'best '  rubredoxin vector triangle was also 
tested at different resolutions by truncating the data; 
experience with the direct methods solution of this struc- 
ture suggested that the enantiomorph resolution would 
depend very sensitively on the resolution (Sheldrick et 
al., 1993). Truncated data are of course more favorable 
than data collected out to a diffraction limit at the same 
resolution, since the signal-to-noise ratio of the latter will 
be worse. With data truncated to 1.1 A, the enantiomorph 
resolution proceeded more slowly, but was essentially 
complete after ten cycles, with MPE's  of 16.2 and 
76.0 °. Truncating the data to 1.2/~ led to no convincing 
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resolution of the pseudosymmetry; after 20 cycles the 
MPE values were 52.0 and 61.8 °. 

We decided to investigate the effect of resolution 
on peaklist optimization alone (without the intervening 
tangent iterations) by expanding rubredoxin from the po- 
sitions of the Fe and four S atoms (which can be obtained 
by automated Patterson interpretation, even with data 
truncated to 1.5/~; Shel'drick et al., 1993), but in the 
true space group P21 rather than with data expanded to 
P1. This is a more favorable situation because the extra 
atoms help to break the pseudosymmetry. We varied the 
number of peaks M input to the peaklist optimization, 
but otherwise the procedure was as described above. It 
appears that it is of advantage to reduce M a little as 
the resolution becomes worse, otherwise the procedure 
can become 'bogged down' in a false solution with 
a large number of spurious atoms. Table 2 shows the 
percentage of correct peaks (within 0.3 A of correct 
atomic positions) as the peaklist is descended in blocks 
of 100 peaks. It will be seen that peaklist optimization 
has produced a substantial improvement over the initial 
peaklist at 1.2A, but not at 1.3/~. In this example, 
elimination of fragments containing less than four atoms 
was not particularly effective. The results are presented 
in Fig. 7 in the form of contoured electron-density maps 
for the same thin slab of space around the planar residue 
Trp37, calculated as Sim-weighted (2wE,,-Ec) maps 
(Sim, 1959) before and after peaklist optimization. The 
program 'O'  (Jones, Zou, Cowan & Kjeldgaard, 1991) 
was used to prepare these pictures. These maps resemble 
normal small-molecule maps with isolated con;ect atoms 
at high resolution, but as the resolution deteriorates the 
peaks remain fairly sharp but the percentage of correct 
sites falls. Connectivity, the most important feature in the 
interpretation of low-resolution protein F-maps obtained 
by, for example, MIR methods, is conspicuous by its 
absence. The peaklist optimization is particularly good 
at removing the many spurious peaks (a feature of E- 
maps) at high resolution, but becomes less effective 
as the data are truncated further. There is a marked 
deterioration in the interpretability of the maps on going 
from 1.2 to 1.3 ~, a point which should be borne in 
mind when collecting high-resolution data of unknown 
metalloproteins with a view to ab initio structure solution 
from the native data alone! 

Tests on unknown structures 

Table 3 illustrates some of the unknown structures 
solved by this procedure; all had defeated exhaustive 
attempts using conventional direct methods. Except 
for two unique CI atoms in the fourth structure, the 
heaviest atoms were O. All were expanded to triclinic 
and the translation necessary to place the origin correctly 
relative to the symmetry elements of the correct space 
group was determined by inspection. In principle it 
would be possible to automate this step; the program 
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Table 2. Numbers of correct peaks (within 0.3 ,~ of the 
true positions) before and after peaklist optimization 

starting from 1 Fe and 4 S for rubredoxin in P2 l 

The peakl i s t  was sorted in order  o f  descend ing  peak  height.  

Truncated to Peaks  
(,~) 1 -100  101-200  2 0 1 - 3 0 0  3 0 1 - 4 0 0  

2wE,. - E~ Sim Fourier !.2 68 41 28 13 
Peaklist optimization 1.2 97 94 89 38 
PO - small 1.2 99 94 87 29 

fragment elimination 
2wE,. - E c Sim Fourier 1.3 60 21 18 12 
Peaklist optimization 1.3 40 31 18 6 
PO -- small 1.3 52 19 15 8 

fragment elimination 

Table 3. Previously unsolved structures 

True space 
group N (a toms in P 1) 
P1 2 x  2 2 0 = 4 4 0  
/41 8 x 52 = 416 
P3221 6 x 2(X) = 1200 
P212121 4 x 270 = 1080 

Initial  phases  N (cycles)  V A X - y e a r s  
Random 4 x 12 0.3 
Random 5 x 335 1.3 
Rotational search 4 x 45 1.3 
Vector superposition 15 x 80 2.9 

The first number  under  N(cyc les )  is the number  o f  paral le l  
permutat ions,  the second is the number  o f  cyc les  after  which  the first 
correct  solut ion appeared.  

MISSYM (LePage, 1987) could also be used. In the 
case of the 141 structure, this inspection also led to the 
deduction of the correct space group; the direct methods 
attempts had all been performed in the space group 14, 
because one of the five reflections with h = k = 0  and 
l=  4n + 2 had significant intensity [ca 80(/)]. Probably 
this structure would have been solved eventually by 
conventional direct methods if the correct space group 
had been used, although the resolution and quality 
of the data are scarcely adequate. The other three 
structures have 200 or more unique atoms, and the 
success rate of conventional direct methods is still 
rather low for structures of this size. In addition, the 
P3::21 structure showed pronounced pseudosymmetry 
(the odd 1 reflections were systematically weak), and 
the other two data sets were of mediocre quality. The 
method presented in this paper has also already proved 
useful in helping us to solve a variety of more trivial 
structures, especially in cases where the space group 
assignment was uncertain. An interesting possibility is 
that the peaklist optimization should, at least in theory, 
be capable of solving twinned structures, given the twin 
law but not the space group; it is often easier to guess 
the former than the latter. 

Concluding remarks 

The results reported here make it clear that alternation 
between real and reciprocal space is capable of solving 
very large structures, given data to atomic resolution 
(in practice ca 1.2 A or better). The method is par- 
ticularly effective when slightly better than random 
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Fig. 7. Sim-weighted E-maps before (a, c, e and g) and after (b, d, f  and h) peaklist optimization starting from 1 Fe + 4 S for rubredoxin in space 
group P2~ as a function of the resolution. The same section through the residue Trp37 was used for all maps. The full data (0.92 ~,) were used for 
(a) and (b), and the data were truncated to 1.2A for (c) and (d), 1.3 A for (e) and (f),  and 1.5 ,~ in (g) and (h). With h!gh-resolution data the 
procedure is very efficient at removing the noise peaks, but the performance deteriorates markedly between 1.2 and 1.3 A. At 1.5 ,~ there is no 
discernible improvement in the map. 
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starting phases are available, for example, from threefold 
Patterson vector superposition or a rotation search to 
find the orientation of a known fragment. These two 
sources of phase information required us to apply the 
recycling procedure with the data expanded to the space 
group P1; it is not clear whether this is also most 
effective when starting from random phases (or random 
atoms), although it appears that the higher success rate 
per starting phase set may compensate for the extra 
computational time required. However, in higher sym- 
metry space groups, the presence of centrosymmetric 
projection reflections would be an asset in reciprocal 
space, and - except where atoms are expected to occupy 
special positions - one could also eliminate peaks close 
to special positions before entering the peaklist optimiza- 
tion. It would require tests on many structures and space 
groups to establish whether it is cost-effective to expand 
to P1; at least if the space group is uncertain, it will also 
be established by the structure solution in P1. 

In this work we have concentrated on the use of peak- 
list optimization in the real space part of the procedure, 
whilst employing the well established tangent formula 
in reciprocal space. Various modified tangent formulae 
have been proposed which would undoubtedly improve 
the performance of the reciprocal space counterpart; 
see, for example, the Sayre tangent formula (Debaerde- 
maeker, Tate & Wooifson, 1985) or a very similar 
formula proposed later by Giacovazzo (1993), a tangent 
formula derived from an E 2 -  1 Patterson function by 
Rius (1993), or a tangent formula incorporating negative 
quartets (Sheldrick, 1990). All these modified tangent 
formulae utilize the weakest as well as the strongest E- 
values; however, it is conceivable that such reflections 
are exploited more effectively by the peaklist optimiza- 
tion stage (but not by recycling the top N peaks, because 
the weak reflections do not contribute significantly to 
the E-map). At the meeting at which this work was first 
presented, Weeks, Hauptman, Chang & Miller (1994) 
reported that the tangent formula was highly competitive 
with the minimal principle in their own real/reciprocal 
space recycling procedure. They referred to their method 
as 'shake and bake', so the work presented in this paper 
could perhaps be described as 'half-baked'! 

Although peaklist optimization is much more effective 
than reinserting the top N peaks in terms of success rate 
per cycle, much of this advantage is compensated by 
that fact that it requires appreciably more computation 
time, especially when all data are used rather than just 
the largest E-values. The correlation coefficient based 
on all the data is much more reliable as a figure of 
merit, and neither the tangent formula nor reinputting 
the strongest peaks are able to escape from a false 

solution with a centrosymmetric distribution of atoms. 
Perhaps it is essential to include either the peaklist 
optimization in real space or a method such as the 
minimal principle in reciprocal space in order to be 
able to resolve enantiomorph ambiguities. The most cost- 
effective approach may well be to use just the largest and 
smallest E-values in the initial cycles, and then the full 
data for the final cycles in order to obtain as complete 
a structure as possible. 
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